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Outline

o Tree amplitudes for Yang-Mills and massless ¢3 theory from the
Scattering Equations in any dimension

e Mobius invariance
e Polynomial form of the Scattering Equations

e The General Solution and Elimination Theory



Tree Amplitudes

A(ki, ko, ... ky) = %WNzker H /dw

Z*Z
Zz, A +l

O encircles the zeros of fa(z, k),

ki - k
fa(z, k) = E — ® —0  The Scattering Equations
bea 22 T 4b
b+#a

(Cachazo, He, Yuan 2013) ... (Fairlie, Roberts 1972)

d k=0, A={1,2,...N}

acA

Motivated by twistor string theory, DG proved A(k1, ko, ... k,) are
¢ and Yang-Mills gluon field theory tree amplitudes, as
conjectured by CHY.



Scattering Equations  fy(z,k) =0, k2=0 z, — 2245

U(z, k) = H(za — zp) 7Rk is Mébius invariant,

a<b
ou ka . kb
a. — _faua fa Z, k) = )
0z, ( ) bEG; Za — Zp
b#a
. . Za +0)?
implying f3(z) — fa(z)%.

C . . 2
The infinitesimal transformations 6z, = €1+€2z, + €323,

U(z+ dz)~ U(z) + g—uéza, so the f; satisfy the three relations
z

d H=0, Y zfi=0 ) zZZ2fi=0.

acA acA acA
There are N — 3 independent Scattering Equations f, = 0.
Fixing z1 = 00,20 = 1,zy = 0, there are N — 3 variables,

and generally (N — 3)! solutions z,(k).



Total Amplitudes

Uy = HaeA(Za — za41) X Pfaffian for Yang-Mills
For example, N = 4,

2

Aade(kla k27 k37 k4 g2< abe ecd + fbce fead + fcae febd )
=g ((

tr(T, TbT Ty) + tr(TdT TpT,)) A(1234)
+ (tr(TaTcTgTp) + tr(Tp Ta T Ta)) A(1342)
+ (tr(TaTaToTe) + tr(TeToTaTa)) A(1423)),

ns = (e1 - e2(ki—k2)a + 2€1 - ko€oq — 262 - ki€1a)
X (€3 - €a(ks — ka)* + 2€3 - kaeg — 2¢4 - k3e§)
+ (61 - €3€0°€4 — €1 - €4€2 - 63) s,
A(1234) = % + % s=(ki+ k)t = (ko + ks)?, u= (ki + k3)?
Ak, ko, ks, k) =A(1234).



A Single Scalar Field, Massless ¢3

A single massless scalar field, Wy = 1.

11 dz
A?(ki, ko, ..., ky :f 2 dw
( ) Oal;[q fa(za k) gq(za_za-&-l)Z/

1 1
A?(ky, ko, k3, ke) = §+E’

Atotal — A¢(k1, k27 k3’ k4)+A¢(k1’ k3, k27 k4) —+ A¢(k1, k47 k27 k3)
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Rewriting the Scattering Equations as Polynomial Equations
whose degrees are as small as possible:

For a subset U C A,
kUEZka, ZUEsz,
acUl beU
then the Scattering Equations
ki - k
Sk
bea 22— 4b
b#a

are equivalent to the homogeneous polynomial equations

Y kjzy=0, 2<m<N-2,

UCA
|U|=m

where the sum is over all - subsets U C A with m elements.
ml(N—m)!



Proof of the Polynomial Form of the Scattering Equations

acA a
ks - k 1 1 ka - k
2 a " "%b b
= = — :O
P() ;(Z—Z)(Z—Zb) 222—2 bz#a(z — 2p)

CEA a,beA ceEA

c#a,b
N—2
= —m=2 k2 =0
m=0 UcA scu
[Ul= |S|=2

where U={be A:b¢ U}. Using > 5.y k3 = k2 = k?, then
[S|=2

m—ZUcA kUZU—O

[U|=m



hm = 0 are the Unique Mobius Invariant Polynomial Equations
L_; denotes the generator of translations,
Z 90 Lohn= ~(N=m—1)hp_1,
acA
L1, special conformal transformations

) - -
L =— 28 + 37, Ly hm=(m—1)hmni1, =)z

acA acA
Lo, scale transformations
Zza N L = N = m)ha,
acA
so that [Ll, L_1] =21y, [[_0, L:I:l] = Flyq.

The hy, 2 < m < N —2, form an (N — 3)-dimensional multiplet of

the Mobius algebra, i.e. a representation of ‘Mobius spin’ 1N — 2.

The equations hp(z1,...,2,) = Y vca kjzy = 0 determine a
|Ul=m

discrete set of points (up to Mobius invariance).



z1 — 00, zy—1 fixed, zy — 0,

Amplitudes in terms of Polynomial Constraints

N-3 N—-2

1 Z,dzoq1
Apn :% Wy (z, k) — (za — zp) —
o ’ rJI;[l hm(z, k) 2§a<];£N71 ) 31;[2 (22 — 21)?
: Em-&-l 1 2 )
hm = lelnoo - = Z Kiay. amZa1Zay -+ Zaps 1<m<N-3,

’ a1,an,...,am#L,N

aj uneq.
The N — 3 polynomial equations h,, = 0, of order m,
linear in each z, individually,

are equivalent to the Scattering Equations f, = 2 kaks

b z3—zp

By Bézout's theorem, they determine (N — 3)! solutions for the
(N —3) ratios z2/zy—1, 23/2ZN-1, - - -, ZN—2/2ZN—1-



k,—2:0, k122ma:(k1+k2+...ka)2:2k1-k2+2k1-k3+...

The Scattering Equations:

N=4  h=kiz+kiz=0,

N=5 h=kizntkhztkiz=0,

2 2 2
hy = k123 7 73 + Kiog 22 24 + k134 z3z4 = 0,

N=6  h =kiz+kiyzz3+kiyzs + kisz5s =0,
2 2 2
h2 == k123 22 23 + k124 22 Z4 + k125 22 25
2 2 2
+ k134 23 24 + k135 23 25 + k145 24 25 — O,

2 2 2
h3 == k1234 22 23 Z4 + k1235 Z2 Z3 25 + k1345 23 Z4 25 = O

N hy,ha,... hy-3=0, 22,23,y ZN-2, ZN—1-



Amplitudes as Algebraic Objects attached to a Variety

| Z,k Zadza
e 3 G T el

solutions 2<a<b<N-— 1

Ohp,

Za ] 1<m<N-3
2<a<N-—2

J(z, k) = det [

The integrals are somewhat symbolic, just sums over the solutions
of the Scattering Equations, and hence rational functions of the
Mandelstam variables.

For the ring of polynomials in CPN=3(z, ..., zy_5), consider the
ideal associated with the hy, ..., hy_3 polynomials. The equations
hm = 0 define a projective varlety, which is a set of (N — 3)! points.

The goal is to understand the amplitudes in terms of natural
algebraic objects attached to the variety in CPN=3 described by
the Scattering Equations.



To solve hp(z,k) =0, 1< m<N-3,

we will eliminate z;, 2 < a< N — 3,
in terms of u = zy_5 and v = zy_1, to give

a single variable polynomial equation of order (N — 3)!in u/v,
whose roots determine the solutions of the Scattering Equations.

Linear equations determine z, ..., zy_3 from u/v.



Solving the Scattering Equations
N =14

h1 = k122Z2 + k12323 =0, 22/23 = —k123/k122 = —kq - k3/k1 - ko.

N=5 Oab... = (ki + ka + kp +...)2
Zo=X,Z3=1U, 24 =V

hi = oox + o3u + oav = 0,

ho = op3XxU + oo4xv + o34uv = 0,

eliminating x yields a quadratic equation for u/v.
This can be written as

hl Ohy

o3U + o4V (o) - g
hy 92

A57
034UV 023U + 04V

0=

which is independent of x.



Another way to establish that As is independent of x

Let As = 0 be the condition on u, v such that h; =0, hp = 0 have
a common solution for some x.

hy 9 . .
If As = hl F?,;; = 0 for some x = xg, then there exists a solution
2 Ox
& such that

Oh

hl(XO + §7 u, V) - hl(X07 u, V) + gaixl(XOa u, V) - 07
Oho

h2(XO + 67 u, V) = h2(X07 u, V) + EW(X(): u, V) = 07

since hp, is linear in each of the variables x, u, v separately.

Then Asg is independent of x.



N=6 write (x,y, u,v) = (22, z3, 24, Zs5)

hi = oox 4+ o3y + o4u + o5v = 0,
hy = 093Xy + ToaxU + 034yU + To5xXV 4 035YV + T45uv = 0,
h3 = 023axyu + 0235 XYV + o5 xuv + o3g5yuv = 0,

eliminating x, y yields a sextic equation for u/v.

This can be written

hy BB
hy h?t b
ks B H
Re=1g 0 hy
0 0 h
0 0 h3
2
h;:%7 hfnyzah’”,
Ox Oxdy

xy
hiy
h)%y
hy

0 0
0 0
0 0
hi h
hy by
hy by

where —— =

0N\g
Ox

ONg
dy

=0



Elimination theory developed by Sylvester and Cayley

Supplement hy = hp = h3 = 0 with xh; = xhy = xh3 = 0,
providing 6 linear relations between 1, x, y, xy, x*, X%y,

hm = am + bmy + cmx + dmxy =0,
Xhm = amXx + mey + CmX2 + de2_y =0,

The condition of their consistency is

al b1 C1 d1 0 0

an bg C2 d2 0 0

as b3 c3 C3 0 0 -0
0 0 dl b1 C1 d1 ’
0 0 a b o

0 0 das b3 C3 d3




Elimination theory developed by Sylvester and Cayley

Supplement hy = hp = h3 = 0 with xh; = xhy, = xh3 = 0,
providing 6 linear relations between 1, x, y, xy, x°, x°y,

The condition of their consistency is equal to

Ne =

0
0
0

hm = am+ bmy + cmx + dmxy =0,
Xhm = amXx + bmxy + CmX2 + dmxzy =0,

1

hy”
hyY
hyY

0 0
0 0
0 0
W R
W hY
W hY

J§)
w

o O O

b1
b>

(oy)
oy

o O O

C1
&)
&}
a
as
as

since the left determinant is independent of x, y.

di
do
a3

b
bs




As before, the independence of Ag from x, y can be established by
noting that Ag = 0 is also the condition for the existence of &,
such that

hm(x + &y +n,u,v) = hy + Ehy, +nh), +néhy =0,
Ehm(x + &y +m,u,v) = Ehm + E2R5 4 EnhY, + €2k = 0.

So Ag = 0 provides the condition on u, v for a common solution
h1 = ho = h3 = 0 independent of x, y.

hi h hY AP 0
hy 5 h5 hY 0 0 n
hs By k5 hY 0

0 0 h K hy hY né
0 0 mh H h hY £2
0 0 hs K, h hY) \&n



Then compute x, y in terms of u, v from linear relations

Use the null vector to find

hy by hY 0 0 1 b
hs h hY 0 0 n hy
0 0 h hr K n{=—-Mmlés
0 0 K h hY &2 ho
0 0 K h ) \&n hs
then
hy W BY 0 0| |k KW 0 0 0
¢ hs W hY 0 0 hs b5 0 0 0
n:?”:— 0 K K K 0 h h KY|.

0 0
0 0 K h K |0 0 h h K
0 0 K B K |0 0 h h* K

For n = 0, y satisfies hpy(x,y, u,v) =0 for some x.



So compute y in terms of u, v from the linear relation

Woow R ke RY

n=€=—h§ hy  hY hy hy hyY|=0.
hy  hs By hs hy*  hy
Linear in y, independent of x.
Notation:
h
h=1h |, h hn PY|=0.



N=7
Writing (22, 23, 24, 25, 26) = (X, ¥, z, u, v) we will eliminate x, y, z
to obtain a single variable equation for u/v of order (N — 3)! = 24,
using the 24 equations

hm:yhmthmzxyhm:xzhm:X2yhm:0, 1<m<4
providing linear relations between the 24 monomials

xPydz’,  0<p<3,0<q<2,0<r<l,

with

hm = am + bmz + cmy + dmx + emyz + fmxz + gmxy + jmxyz.



N=7

Writing (22, 23, 24, 25, 26) = (X, ¥, z, u, v) we will eliminate x, y, z
to obtain a single variable equation for u/v of order (N — 3)! = 24,
using the 24 equations

B = yhm = xhm = xyhm = x*hm = x*yhy, = 0, 1<m<4
G = {1,x,y, xy, x*, x°y},
providing linear relations between the 24 monomials
G={xPy%2", 0<p<3,0<q<2,0<r<1y,
with

hm = am + bmz + cmy + dmX + emyz + fnXz + gmXy + jmXyZ,
Bs; = x"My"zP, m,n,p=0,1.



A7 =|Ms| =0=

hh*hW W*0 0 KPR 0 0 00 0 0 0O OOO O O O O
00 hKWHHKR 00 WK RHKKRARI0O0O0O 0 0 0O0O0O0OO0O0T0O0
000 0O0O0AHKHKAHPP 0 0 KRR 0 0000 0 0 O
000O0O0O0O0OAhhOAWKHWRHAROORKAKRIFKAIFL0O0O0O 0 0O
0000O0OO0OO0OOO OO0 0 O hKHAHA 0 0 RFKRFRKRRIF0 O
0000O0OO0OO0OOO OO0 O0O0O0 h KK H PR 00 K KRYRP?

h

ho
where hy? = 0.0,0,hm, h=

h3

ha

Ay vanishes for h,, = 0, and is independent of x, y, z.

The rows of M7 are labeled by o« € m, G, the columns by 5 € Gs.
The non-zero entries are Mo, 3 = h), if =y, ~ € Bs.

deg Mo, = m+ deg o + deg /3,

deg A7 =3, ,(m+dega)+ > deg =24

The coefficient of v?* in A7 is

h?(h§)2(h§)2(h5)2(h§2)2(h?)2(hgy)Q(thz)G = Ug0'%6U§6U§6(7§360'§460§460§346-



General N

(N — 3)! relations hy,Cy_5 =0 (labeling rows m,«)
between the (N — 3)! variables Cy_4 (labeling columns f3).

M
CM:{ng’a: 0<my<M-—a+1, 1§3§M}

a=1

M
Bu={][xm:0<m<1,1<a<m}

a=1

Mma,ﬁzh;yn if,B:Oz’y, v E Bn_a4,
=0 if 3¢ aBy-a.
Ay =detM = 0.

deg Mma,g = m—i—dega—i—degﬁ’

degANfZ Z (m+dega) — Z deg 3 =

m=lacCn-s BECN-4



Since no element of M is more than linear in v, the term y(N=3)!

in det M must come from the product of linear factors u%v?!.

The element M,,, 5 is of degree one when m — deg~y = 1.

The coefficient of v(N=3)! contains

IT A",

YEBN_4

where m = deg~y + 1, ny = (N —4 — deg~)!(deg~)!



Summary

The scattering equations can be reformulated as polynomial
equations that are linear in the variables z, separately. Using
Mobius invariance, the polynomials are reduced to

(N — 3) equations in (N — 3) variables.

Facilitated by this linearity, elimination theory is used to construct
a polynomial equation of degree (N — 3)! for the single variable
zn—2/zn—1, determining the (N-3)! solutions expected from
Bézout's theorem. Linear relations relate the remaining variables to
the single variable.

For the (N — 3) equations hy(z2,...,2zn—2; k1, .. kny—1) = 0, the
(N — 3)! solutions z,(k) in CPN=3 define a set of points forming
the variety of the ideal < hy, hy, ... hy_3 > . The goal is to
understand the N-point scattering amplitudes, which appear as
rational functions of the kinematic invariants, as natural algebraic
objects attached to this variety.



